

PIR OVERVIEW

PIR DESIGN BASIC

IMAGINE WE ARE CONSTRUCTING A NEW SLAB ON A EXISTING WALL STRUCTURE

Using Post-installed rebar...

Case: Wall-to-slab A&A works *Cast-in* Rebar is not possible Which of the depth should we choose?

The most optimal design is by calculation based on EC2 design code

DIFFERENT LOAD-TRANSFER MECHANISM BETWEEN POST-INSTALLED AND CAST-IN REBARS

The interaction bar-mortar-concrete is strongly product dependent and therefore it requires an assessment procedure

HKU Post-installed Rebar Webinar | December 2021

KEY FEATURES ON POST-INSTALLED REBAR DESIGN

Load Transfer

* * *	**	11	•
			aaaaa

Transfer to the existing reinforcement through concrete

Possible Failure Mode

₽	₽ ↑	₽	¶→	₩→	

Tension and Shear failure modes

Steel, Pull out & Concrete breakout for both tension & shear

1	1
	l S

Tension failure modes

Steel, Pull out & Splitting and only for tension

Bond Strength

Design bond strength in N/mm² for good bond conditions

anowed drining methods									
Pebar - size	Concrete class								
Rebai - Size	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ8 - φ32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Bond strength is controlled by the concrete bond strength

POST-INSTALLED REBAR DESIGN – OVERVIEW

POST-INSTALLED REBAR DESIGN – OVERVIEW

EUROPEAN STANDARD EN 1992-1-1 NORME EUROPÉENNE December 2004 EUROPÄISCHE NORM December 2004 ICS 91.010.30; 91.080.40 Microprating contigends January 2008 and November 2010 Supersides ENV 1992-1-1991, ENV 1992-1-31994, ENV 1992-1-31994, ENV 1992-1-4:1994, ENV 1992-1-4:1994, ENV 1992-1-31994 English version Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings Eurocode 2: Catoul des structures en billen - Pade 1-1: Rigges generates tit rigges pour lies billiments		E * * * * TA® EUROPEAN ASSESSMENT DOCUMENT	
This European Blandard was approved by CEN on 16 April 2004. CEN interferes are bound to comply with the CENCENETLE Internal Regulations which bigulate the conditions to giving this European Standard to a rotate of a second animative which we any attention. Use values that subt biologupatical releases concerning such national standards may be obtained on application to the Central Beosthicite or to any CEN member. This European Blandard exists in three official versions (English, French, German), A version in any other language made by transition under the reprodubility of CON member inits are non language and national to the Central Social action and the product of the product of the Central Beosthicite of the Central Beosthicite of the Central Social action and the product of the terms of the Central Social versions (English, French, German), A version in any other language made by transition under the reprodubility of CON member inits are non language and national to the Central Social action and the Central Social version. CEN members are the national standards bodies of Austria, Belgism, Cyprus, Ceech Republic, Denmark, Estonia, Friand, France, Germany, Cerece, Hungary, Iostand, Heiled, Ray, Lalvia, Lituxina, Luxembourg, Matta, Netherlands, Honey, Poland, Portugal, Stonakia, Stovenia, Spain, Sweden, Swetzerland and United Kingdon.	EOTA TR023 superseded by EAD 330087	Assessment of post-installed rebar connections	2006
EXCREMENTATION COMMITTEE REAL STANDAERIZATION CONTRE EXCREMENTE REAL STANDAERIZATION CONTRE EXCREMENTEE FOR NORMALISATION CONTRE EXCREMENTATION COMMITTEE FOR NORMALISATION MARGEMENT CO	Eurocode 2	E TA www.cola.eu EAD 330087	

 According to the approval, the post-installed rebar connect with HY200 / RE500, it has <u>similar performance</u> as cast-in rebar.

POST-INSTALLED REBAR DESIGN – OVERVIEW

POST-INSTALLED REBAR DESIGN – EXAMPLE

Information required

- Design stress (from structural analysis) and/or required embedment;
 - σ_{sd} = 178 N/mm²
- 2) Bar size and spacing = T12-200
- 3) Concrete Grade = C20/25

Design Input			
Design force in bar	FE	20.1 kN	EC2 9.2.1.4(2)
Required reinforcement	A _{s,rqd}	231 mm²/m	
Provided reinforcement	Ø = 12 mm, s = 200 mm \rightarrow A _{s,prov}	565 mm²/m	
Stress in bars	$\sigma_{sd} = F_E/A_{s,prov}$	178 N/mm ²	
Adhesive used	Hilti HIT-RE 500 ∨3		

Loading: Shear: 90kN (downward)

POST-INSTALLED REBAR DESIGN – EXAMPLE

STEP 1: Basic Anchorage Length

ሐ

 σ .

$$l_{b,rqd} = \frac{\Phi}{4} \times \frac{\sigma_{sd}}{f_{bd}}$$
(1)P The basic anchorage length, $I_{A_s, f_{yd}}$ in a bar assuming constant length, the type of the steel are consideration.
Where;
 $\phi = 12mm, \sigma_{sd} = 178N/mm^2$
(2) For bent bars the anchorage length $I_{b} = (\phi/4) (\sigma_{sd}/f_{bd})$
Bond condition Good $\rightarrow \eta_1$ 1.00 (input)
Bond strength $f_{bd,pi}$ 2.30 N/mm² ETA 16/0142 Values for f_{bd} are given

3,4

3,7

2,0

1.6

8 to 32 mm

2,3

2,7

3,0

ETA-12/0083

4,0

4,3

FACTORS TO CONSIDER FOR MIN. ANCHORAGE LENGTH

POST-INSTALLED REBAR DESIGN – EXAMPLE

STEP 2: Design Anchorage Length

Where; $\alpha_1 = \alpha_3 = \alpha_4 = \alpha_5 = 1$ $c_d = min (a/2, c1, c)$ = min (94, c1, c)= 94

Influence cover/spacing $\alpha_2 = \{0.7 \le 1-0.15[(c_d-\emptyset)/\emptyset] \le 1.0\} = 0.700^{4}$

Influence of transv. reinf. $\alpha_3 = \{0.7 \le 1-K(\sum A_{st}-\sum A_{st.min})/(\emptyset^2 \pi/4) \le 1.0\}$

Influence of transv. pressure $\alpha_5 = \{0.7 \le 1-0.04p \le 1.0\}$

$$l_{b,d} = \alpha_1 \times \alpha_2 \times \alpha_3 \times \alpha_4 \times \alpha_5 \times l_{b,rqd} = 162.4 \text{ mm}$$

ſ	Table 8.3: V	alues of α_1 , α_2 , α_3 and	<i>α</i> ₄ coefficients	
L		Tuno of anchorago	Reinforcemer	nt bar
L	Influencing factor	Type of anchorage	In tension	In compression
l	Shape of bars	Straight	<i>α</i> ₁ = 1,0	$a_1 = 1.0$
l		Other than straight (see Figure 8.1 (b), (c) and (d))	$a_1 = 0.7$ if $c_d > 3\phi$ otherwise $a_1 = 1.0$ (see Figure 8.4 for values of	C ₁
/	Concrete cover	Straight		
/		Other than straight (see Figure 8.1 (b), (c) and (d))	$\alpha_2 = 1 - 0.15 (c_d - 3\phi)/\phi$ ≥ 0.7 ≤ 1.0 (see Figure 8.4 for values of	a) Straight bars $c_d = \min(a/2, c_1, c)$
/	Confinement by transverse reinforcement not welded to main reinforcement	All types	$\begin{array}{l} \alpha_3 = 1 - K \\ \geq 0.7 \\ \leq 1.0 \end{array}$	α ₃ = 1,0
	Confinement by welded transverse reinforcement*	All types, position and size as specified in Figure 8.1 (e)	$\alpha_4 = 0,7$	a4 = 0,7
$\frac{1}{2}$	Confinement by transverse pressure	All types	$ \alpha_5 = 1 - 0.04p $	-
I		design anchoraç	EC2: EN	1992-1-1:2004

POST-INSTALLED REBAR DESIGN – EXAMPLE

STEP 3: Check Minimum Requirement

$$l_{b,d} \ge l_{b,min} = max \{0.3l_{b,rqd}, 10\varphi, 100\}$$

 $l_{b,min} = max \{69.3, 120, 100\} = 120$ mm

 $l_{b,d}$ controls

$$I_{b,min} \text{ is the minimum anchorage length if no other limitation is applied:}$$

$$I_{b,min} \text{ is the minimum anchorage length if no other limitation is applied:}$$

$$I_{b,min} \text{ for anchorages in tension: } I_{b,min} \text{ } \max\{0,3I_{b,rqd}; 10\varphi; 100 \text{ mm}\}$$

$$I_{b,min} \text{ for anchorages in compression: } I_{b,min} \text{ } \max\{0,6I_{b,rqd}; 10\varphi; 100 \text{ mm}\}$$

$$I_{b,min} \text{ (8.6)} \text{ (8.7)}$$

EC2: EN 1992-1-1:2004

$$l_{b,d} = max(\alpha_1 \times \alpha_2 \times \alpha_3 \times \alpha_4 \times \alpha_5 \times l_{b,req}; l_{b,min}) = 162 \text{ mm}$$

I l is taken from Expression (8.3)

FAILURE MODE AND LOAD TRANSFER IN CAST-IN AND POST-INSTALLED REBAR

Fig. 1.3 Load transfers mechanism (a) lap splices in cast-in and post-installed reinforcement (b) without lap splices, anchor-dominated failure modes

INSTALLATION PROCEDURE

TYPICAL WORKFLOW ON POST-INSTALLED REBAR (PIR) INSTALLATION

Fig. 3.1 Typical installation sequential procedure of post-installed rebar

4. Design Methods and Examples 30 4.1 Identifying key design parameters 30 4.2 Design philosophy for post-installed reinforcements: Reinforcement and bonded anchors 30 4.2.1 Comparison of current provisions for post-installed reinforcement designs: European standards 30 4.2.2 Design provisions for RA design procedures in HKBD 2013 34 4.2.3 Design provisions for RA design procedures in EN 1992-1-1 (2004)36 4.2.4 Summary of RA design provisions 39 4.3 A state-of-the-art moment connection design method for post-installed reinforcements using a strut-and-tie model 40 4.3.1 Confinement method to increase bond strength (extension of EN 1992-1-1 (2004)) 44 4.3.2 Design provisions in HKBD (2013) to supplement STM 45 4.3.3 Design provisions in EN 1992-1-1 (2004) to supplement STM 45 4.4 Recommended post-installed reinforcement design for Hong Kong 46 4.4.1 Design parameters 46 4.4.2 Design examples 53

Rey K. L. Su, Daniel T. W. Looi, and Yanking Zhang

CONSTRUCTION ELEMENTS THAT CAN BE FOUND IN EXISTING CONCRETE

- Ferrous Embedded items
- Rebars

- Non-Ferrous Embedded item
- Plastic/ PVC Pipes
- Voids

• Wires with electricity

IMPACTS ON THE WHOLE CONNECTION DESIGN ON TECHNICAL ASPECT

Concrete

- Damaged when heavily drilled
- Cracks & fissure may affect the capacity of the rebar

Adhesive

- Flow through the void inside
- · Cannot assure the depth of rebar filled with adhesive

Rebar

Exposing existing rebar

Performance of Rebar will vary from design assumption

WHY DEPTH / CONCRETE COVER IS CRITICAL AND MUST BE VERIFED

Workloads provoke small cracks in concrete surfaces. With insufficient concrete cover, cracks go down to rebar.

Humidity out of ambient air intrudes into structural member.

Concrete surface exposed to fire over longer period

Preventing steel failures and thus collapses of the structure

Heat penerates concrete

Rebar corrodes, expands and looses tensile strength.

Rebar heats up and loses strength (has lost most of its strength by about 500°C)

Concrete surface may blow off.

Structure collapses

TYPICAL WORKFLOW ON POST-INSTALLED REBAR (PIR) INSTALLATION

Fig. 3.1 Typical installation sequential procedure of post-installed rebar

3. Ins	tallation Methods
3.1	General
	3.1.1 Installer qualifications
	3.1.2 Installation process
3.2	Locating existing reinforcements (Step 1)
3.3	Roughening old concrete surface (Step 2)
	3.3.1 Roughened area
	3.3.2 Requirements in HKBD 2013
	3.3.3 Requirements in EN 1992-1-1 (2004)
	3.3.4 Methods of surface preparation
3.4	Drilling holes into concrete (Step 3)
	3.4.1 Hole drilling requirements
	3.4.2 Types of drilling methods
	3.4.3 Drilling aids
3.5	Cleaning drilled holes (Step 4)
3.6	Injecting adhesive (Step 5)
	3.6.1 Inspection
	3.6.2 Adhesive dispensing tools
	3.6.3 Injection process
3.7	Inserting reinforcements (Step 6)
	3.7.1 Preparing reinforcements
	3.7.2 Inserting reinforcements

Guide for Design, Installation, and Assessment of Post-installed Reinforcements

WHAT IS GOING ON?

What's wrong in the installation process?

• Not enough repetition

- Wrong equipment
- Safety concerns

WHY CLEANING IS SO CRUCIAL?

CAUTION

No cleaning or improper cleaning of the borehole can lead to dramatic decrease of post-installed rebar resistance!

* Ilustrative (depends on mortar type, concrete class, etc.)

HOW DOES CLEANING AFFECT REBAR PERFORMANCE?

Dust & debris settle at the bottom of drill hole

The second secon

Dust & debris still adhere on the interior surface

Dust reduces the bond strength between rebar and concrete **but not catered in Eqn**

Is the bonding strength as ideal as we assumed?

Design Force = Capacity of Rebar

 $\sigma_{sd} * (Sectional Area of Rebar) = f_{bd} * (Contact Area with adhesive)$

 $\sigma_{sd} * \pi \left(\frac{\emptyset}{2}\right)^2 = f_{bd} * \left(\pi \emptyset l_{b,rqd}\right)$

 $l_{b,rqd} = \frac{\Phi}{4} \times \frac{\sigma_{sd}}{\epsilon}$

HOW CAN WE ENSURE 100% FILLING VOLUME INSIDE THE DRILL HOLE?

- Poor distribution of chemical into the drill hole
- Half fill in horizontal application
- Difficult to maintain consistency in ceiling application
- Air bubbles/ voids present

- Consistent distribution of chemical into the drill hole
- Fully spread chemicals

HOW DOES INJECTION AFFECT REBAR PERFORMANCE?

THANK YOU

