

Nanostructures for Water Purification

Zheng-Xiao GUO

LCN / TYC – London / Department of Chemistry University College London z.x.guo@ucl.ac.uk; www.chem.ucl.ac.uk

London's Global University

- Over 4300 academic staff in 8 faculties
- Over 24,000 students (~1/3 overseas)
- Over 150 Fellows of the Royal Society, the British Academy, the Royal Academy of Engineering, and the Academy of Medical Sciences
- 21 Nobel Prize winners ...

UCL breakthroughs

Charles Kuen Kao (高锟)

Francis Crick Mahatma Gandhi

- First transatlantic connection- the internet
- Identification of hormones and vitamins
- Discovery of inert gases, including neon (1st UK Nobel Prize in Chemistry)

"If all the earth's freshwater were stored in a 5-liter container, available fresh water would not quite fill a teaspoon..., $\sim 0.08 - 1$ % "

(Source: World Water Council)

Water Resources Management - UCL

- rainfall simulation, recharge
- groundwater resources, aquifer characterisation
- threats to groundwater resources
- impacts of development
- water quality management
- optimization, and public perception

Nanostructures underpin technologies for clean energy, environment & water

PV / PEC: efficient photo-catalysts

Carbon Capture: effective sorbants, membranes

H₂Fuel: Generation: efficient membranes, catalysts Storage: high capacity, "hybrid" bonding

Biofuels: sustainable processes; effective catalysts

Batteries: electrode structures; fast kinetics

Key Research Facilities

Simulations:

- Computer cluster 3000 CPUs; HPCx (national source);
- Software: WIEN2K, VASP, DL-POLY, QC.

Synthesis:

- Clean room; Clean powder synthesis: Planetary ball mills & Spex ball in a glove box; wetchemistry (co-precipitation; sol-gel...)
- Novel multi-source PVD for nanostructures
- (in collaboration with Univ of East Anglia).

Characterisations:

- Simultaneous TG/DSC/MS/FT-IR/GC;
- Automated / Modified P-C-T;
- XRD,SEM,TEM,AFM.

UCL's Unique Solutions

RAMSI (Rapid Automated Materials Instrument)

50 unique nanoceramics a day

MINI-PLILOT PLANT 5 kg a day

(Dr. J. Darr, Prof. Z.X.Guo, Prof. J.R.E.G. Evans)

Carbon supported nanostructures offer highdensity of hydrogen for PEM fuel cells...

hierarchically porous carbon structures a

Various open-cell porous carbon structures can be tailored by composition & processing conditions

Functionalised Porous Hybrids

Carbon, Li-SiO₂, Zeolites, Carbides - with Organic Linkers (-NH₂, -COOH)

Catalytic CO₂ Activation & Sorption

Li and Guo, JPCC, 2010, 114, 11456

Molecular self-assembly

How to form a well-ordered film on substrate?

Confirmation of APS Film on Titanium (Ti) Surface

Polished titanium

Oxidized titanium

Titanium with APS film

Based on oxidized titanium as background, IR spectrum on left confirms that the APS film has successfully assembled on the titanium surface.

Biofuel Cell Electrode Structures & H₂ Pathways

Immobilisation of catalytic Enzymes onto porous electrode structures to enhance electron transfer and electrocatalysis. Trajectories of H_2 to the active site with different colours indicating different H_2 molecules

Photocatalytic purification of water

Junwang Tang (Chem Eng)

Photocatalytic purification of water

Requisites: 1) Light irradiation 2) Semiconductor photocatalyst Advantages: 1) Friendly to environment;

2) Economical.

Materials (1) Suitable Band gap

(2) Appropriate VB and CB potentials.

Efficiency: Charge transfer and separation (Dynamics)

Dye contaminants

Methylene Blue (MB) degradation

Under UV:	Many results.	
Under visible light:	T. Asahi et al	$TiO_{2-x}N_{x}^{-1};$
	Our results	MIn ₂ O ₄

Synthesis Method: Solid-state reaction method Semiconductor: MIn_2O_4 (M = Ca, Sr, Ba) Original Materials: MCO_3 (M = Ca, Sr, Ba) and In_2O_3

MB degradation

Reaction

a 300 W Xe arc lamp, a cut-off filter and a water filter 0.3 g powdered MIn₂O₄ (M = Ca, Sr, Ba) photocatalysts or P-25 suspended in 100 ml MB solution at room temperature in air.

Fig. Photos of the solution before and after 2 hour photocatalytic reaction under visible light ($\lambda > 420$ nm).

Fig. Effect of pH value on MB degradation over $CaIn_2O_4$ photocatalyst under visible light ($\lambda > 420$ nm).

(z.x.guo@ucl.ac.uk)

Centre for Water Advanced Technologies and Environmental Research (C WATER)

Swansea University United Kingdom

Professor Nidal Hilal Dr Chedly Tizaoui

Colloid and Cell Probe Techniques

- Silicon dioxide sphere attached to the apex of AFM cantilever (colloid probe).
- Living yeast cell immobilised to the apex of AFM cantilever (cell probe).

Atomic Force Microscopy image Bio-colloid of 0.3 μm Blocking MF Membrane Pore

AFM as a tool to assess surface adhesion (membrane fouling)

Development of (bio)fouling resistant membranes

Photograph of initial PVDF(left), & PVDF modified membranes

Photograph of initial PES (right), & PES modified membranes

Ozone Treatment Research

Fig. 12. Sketch diagram of photogenerated electrons transition under visible light between MIn₂O₄ photocatalysts and MB.