Recent Advances in Structural Design in Regions of Low-to-Moderate Seismicity

New Approach in Seismic Torsion Analysis and Design of TU Building Structures

Professor Han Seon Lee

Contents

1. Introduction to the recent earthquakes in Korea
2. Problems of the current code torsion design
3. Proposed equations for interactive relation between shear and torsion
4. Verification of proposed equations through comparison with test results
5. The significance of the proposed concept and limitation of code torsion design

6. Conclusions

1. Introduction to the recent earthquakes in Korea

Earthquakes in Korean Peninsula

Instrumental earthquakes in Korean Peninsula

* Earthquake epicenters since 1978
* Recorded earthquakes > 1,690
$M_{L} \geq 4.5$ recorded earthquakes since 2003

No.	YYYY-MM-DD HH:MM	$\mathbf{M}_{\mathbf{L}}$	$\mathbf{M}_{\mathbf{W}}$	도시명	기록세트수
$\mathbf{1}$	$2018-02-1105: 03$	4.6	4.7^{*}	포항	154
$\mathbf{2}$	$2017-11-1514: 29$	5.4	5.5^{*}	포항	158
$\mathbf{3}$	$2016-09-1920: 33$	4.5	4.6^{*}	경주	53
$\mathbf{4}$	$2016-09-1220: 32$	5.8	5.4^{*}	경주	66
$\mathbf{5}$	$2016-09-1219: 44$	5.1	4.9^{*}	경주	54
$\mathbf{6}$	$2016-07-0520: 33$	5.0	4.97	울산앞해역	47
$\mathbf{7}$	$2014-04-0104: 48$	5.1	5.1	태안앞해역	122
$\mathbf{8}$	$2013-05-1807: 02$	4.9	4.85	백령도앞해역	86
$\mathbf{9}$	$2013-04-2108: 21$	4.9	4.85	신안군앞해역	86
$\mathbf{1 0}$	$2007-01-2020: 56$	4.8	4.72^{*}	평창(오대산)	69
$\mathbf{1 1}$	$2004-05-2919: 14$	5.2	5.2	울진앞해역	54
$\mathbf{1 2}$	$2003-03-3020: 10$	5.0	4.97	백령도앞해역	22
$\mathbf{1 3}$	$2003-03-2305: 38$	4.9	4.85	신안군앞해역	51

KOREA UNIVERSITY
Structural Concrete Engineering Lab.

12 Sept. 2016, Gyeongju earthquake

- Epicenter of Gyeongju Earthquake (Hong, et al. 2017)

Local magnitude \mathbf{M}_{L}	5.8
Moment magnitude M_{W}	5.4
PGAs (EW and NS components) at USN station $\left(\mathrm{R}_{\mathrm{epi}}=8.2 \mathrm{~km}\right)$	0.45 g and 0.43 g
Focal depth	14.1 km (KIGAM)
Maximum Intensity	VIII*
KOREA UNIVERSITY	

12 Sept. 2016, Gyeongju earthquake

- Station USN

Faculty of Engineering THE UNIVERSITY OF HONG KONG

12 Sept. 2016, Gyeongju earthquake

Structural Concrete Engineering Lab.

THE UNIVERSITY OF HONG KONG

15 Nov. 2017, Pohang earthquake

- Station PHA2

Faculty of Engineering THE UNIVERSITY OF HONG KONG

K building: 4-story RC wall bldg. structure

In a shear wall in the horizontal direction, serious shear failure occurred. The wall is not placed in the center of the plan. Because of this torsional irregularity, many cracks in the wall in the transverse direction are observed, despite a large amount of wall in the transverse direction.

Structural Concrete Engineering Lab.

S apartment: 15-story high-rise RC bldg. structure

ing
Structural Concrete Engineering Lab.

H school: 3-story RC MRF structure

One-way asymmetric RC moment frame structure
\rightarrow Torsional irregularity

F building: 5-story RC piloti-type bldg. structure

Shear failure YouTube link

- Two-way asymmetric-plan: shear failure occurred at columns in the flexible edge.
- Columns have inadequate details of hoop, tie, and cover

ACl 318-14
(KBC 2016)
Min hoop spacing
$=\min \left(8 d_{\mathrm{b}, 1}, 24 \mathrm{~d}_{\mathrm{b}, \mathrm{h}}\right.$,
$1 / 2 \mathrm{~d}, 300 \mathrm{~mm}$)
$=\min (152 \mathrm{~mm}$, $240 \mathrm{~mm}, 175 \mathrm{~mm}$,
300 mm) $=152 \mathrm{~mm}$

Structural Concrete Engineering Lab.

Bars not to exceed 150 mm

Faculty of Engineering THE UNIVERSITY OF HONG KONG

F building: 5-story RC piloti-type bldg. structure

Constructed in 2013
November 17, 2017, SBS News

KOREA UNIVERSITY

Faculty of Engineering THE UNIVERSITY OF HONG KONG

C building: 4-story RC piloti-type bldg. structure

Faculty of Engineering THE UNIVERSITY OF HONG KONQ

2. Problems of the current code torsion design

Code torsion design approaches

Equivalent lateral force

Dynamic analysis (static) analysis

```
Base shear: \(V_{D}=C_{S} W \quad\) Static eccentricity, \(\mathrm{e}_{\text {s }}\)
```

Design eccentricity: $\left.e_{d}=\alpha e_{s}+\beta \bar{\beta}\right)$ or $e_{d}=\delta e_{s}-\beta b$
Accidental eccentricity, \mathbf{e}_{a}

Conventional torsion design approaches

Equivalent static analysis

Impact of accidental torsion

- Chopra and De la Llera (1994) "This investigation supports the experience of many practicing structural engineers that building design is influenced very little by considering the accidental eccentricity of $\pm 0.05 b$, a code requirement that is cumbersome to implement in design practice. "
- Anagnostopoulos et al (2015) "the accidental torsion has little effect on member sizing and on making the ductility demand distribution more uniform in the plan. The accidental torsion should be re-examined and perhaps abolished, as it makes the structural design more cumbersome by substantially increasing computational requirements."

Trend of previous researches on seismic torsion design

Total number of publications on building torsion exceeds 700.
(Anagnostopoulos el al. 2013)

$$
\begin{aligned}
& e_{d}=\alpha e_{s}+\beta b \\
& e_{d}=\delta e_{s}-\beta b
\end{aligned}
$$

Basically applied to elastic design. Sometimes, extended to control inelastic behavior.

Statistical and probabilistic analyses for the obtained data such as $u_{f l e x} / u_{\text {avg }}$

Propose various values of α, β, and δ, to control elastic and inelastic behavior.

No consensus achieved.
Very limited amount of research performed for investigations of detailed torsional behaviors of the models

KOREA UNIVERSITY

Structural Concrete Engineering Lab.

Definition of eccentricity

Inherent torsion:
Zero inertial torsional moment at CM

(a) Code static eccentricity model

Faculty of Engineering
THE UNIVERSITY OF HONG KONG

Resistance eccentricity

(a) FEMA 454 eccentricity model

(b) Eccentricity model in this study

Shortcomings of the current design methods

- The current code torsion design has two main shortcoming:

1) Current seismic provisions for building structures allow the estimation of the design torsional moment based on the design eccentricity composed of the stiffness and accidental eccentricities, which does not take into account the inertial torsional moment about the centre of mass (CM), even though the accidental eccentricity accounts for all kinds of uncertainty regarding torsion.
2) The eccentricity, e_{y}, which is commonly used by most engineers in FEMA 454 [2006], does not coincide with the e_{s} used for design eccentricity, e_{d}, in the current codes. This discrepancy in the definition of eccentricity may lead to substantial confusion among engineers.

3. Two concepts used for overcoming the limitations of current torsion design

1) The prediction equations for the ratio $T_{\text {total }} / V_{x}$ and $\delta_{\text {edge }} / \delta_{\text {center }}$ in the elastic range are proposed as functions of the resistance eccentricity, \boldsymbol{e}_{y}.
2) The overall hysteretic relations between shear and torsion in forces and deformations are approximated by the ellipsoids.

Methodology

The demands estimated by using the two interactive relations between shear and torsion are compared to those obtained from the shake-table tests of :

- 1:5-scale 5 -story RC piloti-type building model
(Lee and Hwang, EESD 2015)
- 1:12-scale 17-story RC piloti-type building model.
(Ko and Lee, EESD 2006)

Prediction equations (1/3)

Then equation (1) can be written as:

$$
\begin{equation*}
-[M] \ddot{u}_{t}=[K] u \tag{2}
\end{equation*}
$$

Prediction equations (2/3)

$$
\begin{align*}
\{F\}= & {[K]\{u\} } \\
\left\{\begin{array}{c}
V_{x} \\
V_{y} \\
T_{\text {total }}
\end{array}\right\}= & {\left[\begin{array}{ccc}
K_{X} & 0 & K_{\theta X} \\
0 & K_{Y} & K_{\theta X} \\
K_{\theta X} & K_{\theta Y} & K_{\theta \theta}
\end{array}\right]\left\{\begin{array}{c}
\delta_{x} \\
\delta_{y} \\
\theta_{t}
\end{array}\right\} } \tag{3}\\
& K_{X}=\sum_{i=1}^{n} k_{x i} \text { and } K_{Y}=\sum_{i=1}^{n} k_{y i} \tag{4}
\end{align*}
$$

i - represents $\quad K_{\theta X}=e_{s y} K_{X}$ and $K_{\theta Y}=e_{s x} K_{Y}$
the frame

$$
\begin{align*}
e_{s y} & =\frac{\sum_{i=1}^{n} k_{x i} d_{y i}}{K_{X}} \text { and } e_{s x}=\frac{\sum_{i=1}^{n} k_{y i} d_{x i}}{K_{Y}} \\
K_{\theta \theta} & =K_{\theta \theta X}+K_{\theta \theta Y}=\sum_{i=1}^{n} k_{x i} d_{y i}^{2}+\sum_{i=1}^{n} k_{y i} d_{x i}^{2}=b_{y}^{2} K_{X}+b_{x}^{2} K_{Y} \tag{7}\\
b_{x} & =\sqrt{K_{\theta \theta X} / K_{X}} \quad \text { and } b_{y}=\sqrt{K_{\theta \theta Y} / K_{Y}} \tag{8}
\end{align*}
$$

Prediction equation (3/3)

$$
\begin{align*}
& e_{y}=\frac{T_{x}}{V_{x}}=\left(\frac{K_{\theta \theta X}-e_{s y}{ }^{2} K_{X}}{K_{\theta \theta}-e_{s y}{ }^{2} K_{X}-e_{s x}{ }^{2} K_{Y}}\right)\left(\eta_{y}-e_{s x} \gamma_{y}\right)+\left(\frac{K_{\theta \theta Y}-e_{s x}{ }^{2} K_{Y}}{K_{\theta \theta}-e_{s y}{ }^{2} K_{X}-e_{s x}{ }^{2} K_{Y}}\right) e_{s y} \\
& =b_{x}\left(\eta_{y}-e_{s x} \gamma_{y}\right)+b_{y} e_{s y} \\
& \gamma_{y}=\frac{V_{y}}{V_{x}} \quad \eta_{y}=\frac{T_{\text {toatl }}}{V_{x}}=\frac{e_{y}-b_{y} e_{s y}}{b_{x}}+e_{s x} \gamma_{y} \tag{10}\\
& \frac{T_{x}}{T_{\text {toata }}}=\frac{1}{T_{\text {toate }} / V_{x}} e_{y}=\frac{1}{\eta_{y}} e_{y}=\frac{b_{x}\left(b_{y} e_{y y}-b_{x} e_{s x} \gamma_{y}\right)}{e_{y}-\left(b_{y} e_{s y}-b_{x} e_{s x} \gamma_{y}\right)}+b_{x} \tag{11}\\
& \mu_{x}=\frac{\theta_{t}}{\delta_{x}}=\frac{e_{y}-e_{s y}}{\left(K_{\theta \theta X} / K_{X}\right)-e_{s y} e_{y}} \tag{12}\\
& \frac{\delta_{\text {sitf }}}{\delta_{x}}=1+\mu_{x} d_{y, s, s i f f} \quad \text { or } \frac{\delta_{\text {fex }}}{\delta_{x}}=1+\mu_{x} d_{y, f f e x} \tag{13}
\end{align*}
$$

1:5-scale 5-story RC piloti-type building model

KOREA UNIVERSITY

Structural Concrete Engineering Lab.

Time histories of responses for 5-story model

Faculty of Engineering
Structural Concrete Engineering Lab.

Time histories of responses for 5 -story model

Hysteretic relations between force and deformation for 5-story model

Stiffness matrix for 5-Story model

Faculty of Engineering THE UNIVERSITY OF HONG KONG

1:12-scale 17 -story RC piloti-type building model

Experimental setup of $\mathbf{1 7}$-story model

Overview of the model and
experimental arrangement

Instrumentation for wall and columns

Time histories of the responses for 17 -story model

Faculty of Engineering THE UNIVERSITY OF HONG KONG

Hysteretic relations between force and deformation for 17-story model

Stiffness matrix for 17-story model

$K_{X}=22.8 \mathrm{kN} / \mathrm{mm}$
$K_{Y}=8.64 \mathrm{kN} / \mathrm{mm}$
$K_{X \theta}=-7085 \mathrm{kN} / \mathrm{rad}$
$K_{Y \theta}=216 \mathrm{kN} / \mathrm{rad}$
$K_{\theta \theta X}=4.98 \times 10^{6} \mathrm{kNmm} / \mathrm{rad}$ $K_{\theta \theta Y}=1.92 \times 10^{6} \mathrm{kNmm} / \mathrm{rad}$ $K_{\theta \theta}=6.90 \times 10^{6} \mathrm{kNmm} / \mathrm{rad}$

$$
\mathrm{V}_{\mathrm{x} 1}=\mathrm{V}_{\text {inertia }}-\mathrm{V}_{\mathrm{x} 2}-\mathrm{V}_{\mathrm{x} 3}
$$

$\mathrm{K}_{\mathrm{y} 1}=\mathrm{K}_{\mathrm{y} 2}=\mathrm{K}_{\mathrm{y} 3}=\mathrm{K}_{\mathrm{x} 2}=\mathrm{K}_{\mathrm{x} 3}=2.88 \mathrm{kN} / \mathrm{mm}$

$$
\boldsymbol{\lambda}\left\{\begin{array}{c}
V_{x} \\
V_{y} \\
T_{\text {total }}
\end{array}\right\}=\left[\begin{array}{ccc}
22.8 & 0 & -7085 \\
0 & 8.64 & 216 \\
-7085 & 216 & 6.90 \times 10^{6}
\end{array}\right]\left\{\begin{array}{l}
\delta_{x} \\
\delta_{y} \\
\theta_{t}
\end{array}\right\}
$$

Faculty of Engineering THE UNIVERSITY OF HONG KONG

4. Verification of proposed equations through comparison with test results

Time history of edge drifts

* 5-Story model

* 17-story model

Faculty of Engineering THE UNIVERSITY OF HONG KONG

Comparison of experiment and prediction (1/2)

1) 5-Story model

2) 17-Story model

KOREA UNIVERSITY

Structural Concrete Engineering Lab.

Faculty of Engineering THE UNIVERSITY OF HONG KONG

Comparison of experiment and prediction (2/2)

1) 5-Story model

2) 17-Story model

Seismic demands presented by ellipses

The equation of ellipse can be expressed as the path of a point $(X(t), Y(t))$:
$X(t)=A \cos t \cos \varphi-B \sin t \sin \varphi$
$Y(t)=A \cos t \sin \varphi+B \sin t \cos \varphi$
t : the parametric angle, $0 \leq \theta \leq 2 \pi$;
\boldsymbol{A} is radius in the major axis;
\boldsymbol{B} is the radius in the minor axis; φ : the angle between the X -axis and the major axis;

		$\mathrm{X}(\mathrm{t}): \delta_{\mathrm{x}}(\mathrm{mm})$		$\mathbf{Y}(\mathrm{t}): \theta_{1}(\mathrm{rad})$		A	B	ϕ
		P1	P2	P1	P2			
5-Story model	black bold	-0.38	0.25	4.8×10^{-4}	3.4×10^{-4}	1.41	0.96	-0.785
	blue dotted	-0.35	0.13	6.4×10^{-4}	5.4×10^{-4}	1.41	0.88	-0.785
17-Story model	black bold	1.56	-0.41	2.4×10^{-3}	2.5×10^{-4}	1.41	0.28	-0.785
	blue dotted	1.56	-0.18	2.4×10^{-3}	6.2×10^{-4}	1.41	0.36	-0.785

Torsional -translation deformation relationship

1) 5-Story model

2) 17-Story model

KOREA UNIVERSITY

Structural Concrete Engineering Lab.

Faculty of Engineering THE UNIVERSITY OF HONG KONG:

Shear force -torsional moment relationship

1) 5-Story model

2) 17-Story model

Faculty of Engineering THE UNIVERSITY OF HONG KONG

Comparison of experiment and prediction (1/2)

1) 5-Story model

2) 17-Story model

Structural Concrete Engineering Lab.

Faculty of Engineering THE UNIVERSITY OF HONG KONG

Comparison of experiment and prediction (2/2)

1) 5-Story model

2) 17-Story model

Structural Concrete Engineering Lab.

Faculty of Engineering THE UNIVERSITY OF HONG KONG

5. The significance of the proposed concept and limitation of code torsion design

Relationship in forces for five-story model

Phenomena	$e_{y}(\%)$	$\eta_{y}(\%)$	$\begin{gathered} \delta_{x l} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \delta_{x 3} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} V_{x} \\ (\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} T_{x} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} T_{\text {total }} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} \theta_{t} \\ \left(\times 10^{-4} \mathrm{rad}\right) \end{gathered}$	$\delta_{x 1} / \delta_{x}$
(a) Inherent torsion ($\mathrm{T}_{\text {tatal }}=0$)	0.74	0	0.45	0.38	37.7	0.53	0	-0.36	1.06
(b) X-dir. Translation only	1.33	1.33	0.48	0.48	39.17	0.99	0.99	0	1
(c) Accidental torsion (-5\%)	-1.48	-5	0.41	0.43	32.4	-0.91	-25.8	0.1	1.21
(d) Accidental torsion ($+5 \%$)	2.96	5	0.61	0.31	37.3	2.1	0.55	-1.6	1.13
(e) Rotation only	481	1225	-0.51	0.51	1.12	10.3	24.8	5.4	∞

| Phenomena | $\mathrm{e}_{\mathrm{y}}(\%)$ | $\eta_{\mathrm{y}}(\%)$ | $\begin{array}{c}\delta_{\mathrm{x} 1} \\ (\mathrm{~mm})\end{array}$ | $\begin{array}{c}\delta_{\mathrm{x} 3} \\ (\mathrm{~mm})\end{array}$ | $\begin{array}{c}\mathrm{V}_{\mathrm{x}} \\ (\mathrm{kN})\end{array}$ | $\begin{array}{c}\mathrm{T}_{\mathrm{x}} \\ (\mathrm{kNm})\end{array}$ | $\begin{array}{c}\mathrm{T}_{\text {total }} \\ (\mathrm{kNm})\end{array}$ | $\begin{array}{c}\theta_{\mathrm{t}} \\ \left(\times 10^{-4} \mathrm{rad}\right)\end{array}$ | $\delta_{\mathrm{x} 1} / \delta_{\mathrm{x}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$]$

Significance of the proposed concepts

We can not only visualize the overall relationship
between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of the structures such as the maximum and minimum edge drifts and the corresponding shear force and torsion moment with the eccentricity.

Comparison of the range of eccentricity according to the accidental torsion

5-Story model

17-Story model

Unit: \%	$\eta=T_{\text {total }} / V_{x}$	$e_{y}=T_{x} / V_{x}$	$\eta_{\text {acc }}=T_{\text {acc }} / V_{x}$	$e_{y}=T_{x, \text { acc }} / V_{x}$
5-Story	$-125 \sim 81$	$-58.6 \sim 74.6$	$-5 \sim+5$	$-1.48 \sim+2.96$
17-Story	$-56.4 \sim 145$	$-40.3 \sim 74.8$	$-5 \sim+5$	$-15.6 \sim-9.7$

KOREA

Structural Concrete Engineering Lab.
Faculty of Engineering THE UNIVERSITY OF HONG KONQ

6. Conclusions

Conclusions (1/2)

1. The prediction equations and ellipsoidal bounding equations enable the engineers to have a clear overall picture of the structural responses including the critical minimum, maximum values of $T_{\text {total }}, V_{x}, \delta_{\text {edge }}$ and $\delta_{\text {edge }} / \delta_{x}$, which occur at the different instant of e_{y}.
2. Instead of using any specific value of eccentricity, e_{y}, as design parameter, the demand in torsion can be determined in the direct relationship with the base or story shear, represented as an ellipse.

Conclusions (2/2)

3. The inherent torsion in the current code static eccentricity model represents a very specific instant of zero inertial torsional moment at the CM, in contrast to the general state of the inertial torsion moment, which can be very large in TU structures. Therefore, it is evident that the code static eccentricity model cannot accommodate the real torsional behaviour of particularly TU structures,
4. The use of only accidental torsion eccentricity $\boldsymbol{\eta}_{a}=T_{\text {total }} / V$ $(-5 \%$ to $+5 \%)$ represents a very limited range of torsional behaviour, compared to the actual ranges, explaining why the accidental torsion causes only a negligible design impact despite the code-required cumbersome design procedure.

Thank you for your attention!

