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1. Introduction to the recent 

earthquakes in Korea



Earthquakes in Korean Peninsula

❖ Earthquake epicenters since 1978

❖ Recorded earthquakes > 1,690

Instrumental earthquakes in 

Korean Peninsula

No. YYYY-MM-DD HH:MM ML MW 도시명 기록세트수
1 2018-02-11 05:03 4.6 4.7* 포항 154

2 2017-11-15 14:29 5.4 5.5* 포항 158

3 2016-09-19 20:33 4.5 4.6* 경주 53

4 2016-09-12 20:32 5.8 5.4* 경주 66

5 2016-09-12 19:44 5.1 4.9* 경주 54

6 2016-07-05 20:33 5.0 4.97 울산앞해역 47

7 2014-04-01 04:48 5.1 5.1 태안앞해역 122

8 2013-05-18 07:02 4.9 4.85 백령도앞해역 86

9 2013-04-21 08:21 4.9 4.85 신안군앞해역 86

10 2007-01-20 20:56 4.8 4.72* 평창(오대산) 69

11 2004-05-29 19:14 5.2 5.2 울진앞해역 54

12 2003-03-30 20:10 5.0 4.97 백령도앞해역 22

13 2003-03-23 05:38 4.9 4.85 신안군앞해역 51

ML ≥ 4.5 recorded earthquakes 

since 2003
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• Epicenter of Gyeongju Earthquake 

(Hong, et al. 2017)
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12 Sept. 2016, Gyeongju earthquake 

Local magnitude ML 5.8

Moment magnitude MW 5.4

PGAs (EW and NS components) 

at USN station (Repi = 8.2 km)
0.45g and 0.43g

Focal depth 14.1 km (KIGAM)

Maximum Intensity VIII*
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12 Sept. 2016, Gyeongju earthquake 

• Station USN
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12 Sept. 2016, Gyeongju earthquake 
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Failure and Falling of roof tile



15 Nov. 2017, Pohang earthquake

• Station PHA2
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C Building

K Building

PHA2 
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K building: 4-story RC wall bldg. structure
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K building: 4-story RC wall building structure

Wall thickness: 15cm

Spacing of 

horizontal bars: 

25cm
KBC 2016: 

min (lw/5=500mm, 

3h=450mm, 450mm)lw =2.5m

Spacing of 

vertical bars: 20cm 

KBC 2016: 

min (lw/3=833mm, 

3h=450mm, 450mm)

In a shear wall in the horizontal direction, 

serious shear failure occurred. The wall is not placed 

in the center of the plan. Because of this torsional 

irregularity, many cracks in the wall in the transverse 

direction are observed, despite a large amount of wall 

in the transverse direction.
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S apartment: 15-story high-rise RC bldg. structure
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H school: 3-story RC MRF structure
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H school: 3-story RC MRF structure

Short column effect

Masonry 
Infill-wall

Constructed in 1968

Use: School

ⓒ Kim, SJ 

N

E
Complete shear failure of short columns

One-way asymmetric

RC moment frame 

structure

→ Torsional 

irregularity

RC columns

Masonry Infill-wall



F building: 5-story RC piloti-type bldg. structure
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C5C4

© Naver map Shear failure 

YouTube link
Completed: 2013

Use: Residential

Parking lot

ACI 318-14 

(KBC 2016)

Min hoop spacing 

= min (8db,l, 24db,h, 

1/2d, 300mm) 

= min (152mm, 

240mm, 175mm, 

300mm) = 152mm

• Two-way asymmetric-plan: shear failure 

occurred at columns in the flexible edge.

• Columns have inadequate details 

of hoop, tie, and cover

Column: 

35x35cm

2.3m 5m

C5

C4

hoop

28cm

cover

8cm

D19

ⓒ Kim, SJ 

C4 C5



F building: 5-story RC piloti-type bldg. structure
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November 17, 2017, SBS News
Constructed in 2013



C building: 4-story RC piloti-type bldg. structure
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High torsional irregularity

→ unexpected large drift 

→ shear failure of column

ⓒ Kim, SJ 
1st story

Column size: 

60x40cm
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C2 C3
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db,h = 10mm

sh
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2. Problems of the current 

code torsion design
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Conventional torsion design approaches

17

CM4
CM3

CM2

CM1

CM0
이동

CM4
CM3

CM2

CM1

CM0

CM4
CM3

CM2

CM1

CM0

CM4
CM3

CM2

CM1

CM0

CM4
CM3

CM2

CM1

CM0

각 층 4가지 CM,
5층 모델의경우,
45=1024회의
동적해석수행

X

Y

Z

Dynamic analysis 

No. of cases

2×25=64

No. of cases

45=1024

Equivalent static analysis 



Impact of accidental torsion

• Chopra and De la Llera (1994) “This investigation supports 

the experience of many practicing structural engineers that 

building design is influenced very little by considering  the 

accidental eccentricity of ±0.05b, a code requirement that is 

cumbersome to implement in design practice. ”

• Anagnostopoulos et al (2015) “the accidental torsion has 

little effect on member sizing and on making the ductility 

demand distribution more uniform in the plan. The 

accidental torsion should be re-examined and perhaps 

abolished, as it makes the structural design more 

cumbersome by substantially increasing computational 

requirements.”

18
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ed = αes + βb

ed = δes − βb

Basically applied to 

elastic design. 

Sometimes, 

extended to control 

inelastic behavior.

• Various idealized 

one-/ multi-story 

system

• Various linear / 

nonlinear analytical 

model

• Various input 

ground motions

Statistical and 

probabilistic

analyses for the 

obtained data 

such as uflex/uavg

Propose various 

values of α, β, 

and δ, to control 

elastic and 

inelastic behavior.

Total number of 

publications on 

building torsion 

exceeds 700.
(Anagnostopoulos el al. 2013)

No consensus 

achieved.Very limited amount of research performed for 

investigations of  detailed torsional behaviors of the models

“Black Box”

Trend of previous researches on seismic torsion 
design



Definition of eccentricity
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Resistance eccentricity
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Shortcomings of the current design methods
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• The current code torsion design has two main shortcoming:

1) Current seismic provisions for building structures allow the 

estimation of the design torsional moment based on the 

design eccentricity composed of the stiffness and accidental 

eccentricities, which does not take into account the inertial 

torsional moment about the centre of mass (CM), even though 

the accidental eccentricity accounts for all kinds of uncertainty 

regarding torsion. 

2) The eccentricity, ey, which is commonly used by most 

engineers in FEMA 454 [2006], does not coincide with the es

used for design eccentricity, ed,  in the current codes. This 

discrepancy in the definition of eccentricity may lead to 

substantial confusion among engineers. 
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3. Two concepts used for overcoming 

the limitations of current torsion 

design 
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1) The prediction equations for the ratio 

Ttotal/Vx and δedge/δcenter in the elastic 

range are proposed as functions of the 

resistance eccentricity, ey.

2) The overall hysteretic relations between 

shear and torsion in forces and 

deformations are approximated by the 

ellipsoids. 



Methodology 

The demands estimated by using the two interactive 

relations between shear and torsion are compared to 

those obtained from the shake-table tests of :

• 1:5-scale 5-story RC piloti-type building model 

(Lee and Hwang, EESD 2015)

• 1:12-scale 17-story RC piloti-type building model. 

(Ko and Lee, EESD 2006)
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Prediction equations (1/3)
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Prediction equations (2/3)
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Prediction equation (3/3)
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1:5-scale 5-story RC piloti-type building model 
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Time histories of responses for 5-story model
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Time histories of responses for 5-story model



Hysteretic relations between force and 
deformation for 5-story model
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Front view Side view Plan view 

1:12-scale 17-story RC piloti-type building model 



Experimental setup of 17-story model
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Time histories of the responses for 17-story model
Y

X

X3

X1

X2

Y3Y2Y1

CM

1150

650500

1
0
0
0

5
0
0

5
0

0



Hysteretic relations between force and 
deformation for 17-story model
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4. Verification of proposed equations 

through comparison with test 

results



δ

40

Time history of edge drifts 
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Comparison of experiment and prediction (1/2)

1) 5-Story model

2) 17-Story model
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1) 5-Story model

2) 17-Story model

Comparison of experiment and prediction (2/2) 
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Seismic demands presented by ellipses

The equation of ellipse can be expressed 

as the path of a point (X(t), Y(t)) :

X (t) = A cost cosφ – B sint sinφ

Y (t) = A cost sinφ + B sint cosφ

t: the parametric angle, 0 ≤ θ ≤ 2π; 

A is radius in the major axis; 

B is the radius in the minor axis; 

φ: the angle between the X-axis and the 

major axis;
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Points based on the 

modal analysis results

Readjusted points

X(t): δx (mm) Y(t): θt (rad)
A B ϕ

P1 P2 P1 P2

5-Story model 
black bold -0.38 0.25 4.8×10-4 3.4×10-4 1.41 0.96 -0.785

blue dotted -0.35 0.13 6.4×10-4 5.4×10-4 1.41 0.88 -0.785

17-Story model 
black bold 1.56 -0.41 2.4×10-3 2.5×10-4 1.41 0.28 -0.785

blue dotted 1.56 -0.18 2.4×10-3 6.2×10-4 1.41 0.36 -0.785
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Torsional -translation deformation relationship

1) 5-Story model

2) 17-Story model
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Shear force -torsional moment relationship

1) 5-Story model

2) 17-Story model
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Comparison of experiment and prediction (1/2)

1) 5-Story model

2) 17-Story model
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1) 5-Story model

2) 17-Story model

Comparison of experiment and prediction (2/2)
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5. The significance of the proposed 

concept and limitation of code 

torsion design
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Phenomena ey (%) ηy (%)
δx1

(mm)

δx3

(mm)

Vx

(kN)

Tx

(kNm)

Ttotal

(kNm)

θt

(×10-4 rad)
δx1/δx

(a) Inherent torsion (Ttotal=0) 0.74 0 0.45 0.38 37.7 0.53 0 -0.36 1.06

(b) X-dir. Translation only 1.33 1.33 0.48 0.48 39.17 0.99 0.99 0 1

(c) Accidental torsion (-5%) -1.48 -5 0.41 0.43 32.4 -0.91 -25.8 0.1 1.21

(d) Accidental torsion (+5%) 2.96 5 0.61 0.31 37.3 2.1 0.55 -1.6 1.13

(e) Rotation only 481 1225 -0.51 0.51 1.12 10.3 24.8 5.4 ∞

Relationship in forces for 
five-story model
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Phenomena ey (%) ηy (%)
δx1

(mm)

δx3

(mm)

Vx

(kN)

Tx

(kNm)

Ttotal

(kNm)

θt

(×10-4 rad)
δx1/δx

(f) δx3 maximum (stiff) 22.7 49.4 -0.15 0.57 17.8 -7.7 -20.9 3.8 -0.71

(g) δx1 maximum (flexible) -15.9 -37.5 0.84 -0.10 28.9 8.7 15.7 -5.0 2.28

Relationship in deformations for five-story model
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Significance of the proposed concepts 

We can not only visualize the overall relationship 

between shear and torsion with the range of forces and 

deformations, but also pinpoint easily the information 

about critical responses of the structures such as the 

maximum and minimum edge drifts and the 

corresponding shear force and torsion moment with the 

eccentricity.

51



-200

-100

0

100

200

-80 -60 -40 -20 0 20 40 60 80

T
to

ta
l/
V

x
 =

T
x
/V

x
=

T
y/

V
x

(%
)

ey (%)

Taft 030

esy=-31.1%

ey= -9.7%ey= -15.6%

Peak δX1 Peak δX3

Ty/Vx

Ttotal/Vx=ηy

Ttotal/Vx=+5% 

Ttotal/Vx=-5% 

Tx/Vx=ey

Ttotal / Vx

Ty / Vx

Tx / Vx

52

Comparison of the range of eccentricity 
according to the  accidental torsion

17-Story model5-Story model

Unit: % η=Ttotal/Vx ey =Tx/Vx ηacc=Tacc/Vx ey=Tx,acc/Vx

5-Story -125 ~ 81 -58.6 ~74.6 -5 ~ +5 -1.48 ~ +2.96

17-Story -56.4 ~145 -40.3 ~74.8 -5 ~ +5 -15.6 ~ -9.7
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6. Conclusions



Conclusions  (1/2)

1. The prediction equations and ellipsoidal bounding 

equations enable the engineers to have a clear overall 

picture of the structural responses including the 

critical minimum, maximum values of Ttotal, Vx, δedge

and δedge/δx, which occur at the different instant of ey. 

2. Instead of using any specific value of eccentricity, ey, 

as design parameter, the demand in torsion can be 

determined in the direct relationship with the base or 

story shear, represented as an ellipse. 
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3. The inherent torsion in the current code static eccentricity 

model represents a very specific instant of zero inertial 

torsional moment at the CM, in contrast to the general 

state of the inertial torsion moment, which can be very 

large in TU structures. Therefore, it is evident that the code 

static eccentricity model cannot accommodate the real 

torsional behaviour of particularly TU structures, 

4. The use of only accidental torsion eccentricity ηa=Ttotal/V   

(-5% to +5%) represents a very limited range of torsional 

behaviour, compared to the actual ranges, explaining why 

the accidental torsion causes only a negligible design 

impact despite the code-required cumbersome design 

procedure. 
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Conclusions  (2/2)



Thank you

for your attention!
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