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 Coupled shear walls(CSW) are widely used for tall reinforced 

concrete (RC) buildings.  

 Overturning moment is resisted jointly by the bending action of the 

wall units and the couple formed from axial forces developed in the 

wall units by coupling beams(CBs). 

Background 
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Seismic design philosophy of CSWs 

 Strong coupling beams (CBs): shear walls may fail at their bases 

first. This could endanger the safety of the building and render the 

repair after earthquake very difficult.   

 Weak coupling beams (CBs): coupling beams will yield before the 

walls yield. thereby protecting the walls from being damaged. Since 

the coupling beams are easier to repair than the walls, most 

earthquake resistant designs follow the strong wall-weak beam 

philosophy.   

 Ideal failure sequence: Strong walls weak beams. Walls are the last 

to yield so as to maintain lateral stability of the structure and allow 

large deformation before collapse.   

 Coupling beams (CBs) are required being “fuse” and possessing 

high rotation ductility. It is questionable whether deep RCCBs could 

possess such a great rotation ductility. 

Background 
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Chile Earthquake 

(2010) 

Wenchuan Earthquake（2008） 

Kobe Earthquake 

(1995) 

Loma Prieta Earthquake 

(1989) 

Damage of deep RCCBs after strong EQ 
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Background 

Coupling beam 

Questions: 

What is the behavior of a RC coupling beam (RCCB)?  

How shear force is resisted by a deep RCCB? 

How to improve the seismic behavior of a deep RCCB?  
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Strut-tie model Distributed truss model 

Generalized truss model 

分布桁架模型
压杆模型

广义桁架模型

Shear force transfer mechanisms in a RCCB 

 Deep RC coupling beams (RCCBs) (l/h≤2.5) 

 Distributed truss model 

 Strut-tie model 

 Combination of the upper two models 

 Slender RC coupling beams (l/h>2.5) 

Generalized truss model 
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Diagonally reinforced bars 

Conventionally reinforced 

Typical reinforced method of RCCBs 
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Experimental study on deep RCCBs in HKU (Kwan  and Zhao , 2002).  

RC coupling beams(RCCBs) 

Parameters of the specimens 



11 Typical failure mode of Deep RCCBs 

MCB4(flexural) MCB3(flexural) MCB1(shear tension) MCB2(flexural) 

Shear tension Shear sliding failure Flexural shear 
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Typical failure mode of Deep RCCBs 

CCB4 

(flexural) 

CCB12 

(shear-sliding) 

CCB1 

(shear tension) 

CCB11  

(diag-bars buckling) 
2019/6/28 
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Failure 
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Load-displacement curves of the conventionally RCCBs exhibit 

substantial pinching, the curve of the diagonally reinforced RCCB 

exhibits no pinching and appears to be more stable. 

RC coupling beams(RCCBs) 
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Envelopes of the cyclic load-displacement curves 

Envelopes of the cyclic load-displacement curves prove that as the 

span/depth ratio of such conventionally reinforced RCCB decreased, 

the load resisting capacity increased but the ductility decreased. CCB1 

series have different reinforcement layouts but had similar load 

resisting capacities and similar ductility. 
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Test results of the specimens under monotonic load and reversed cyclic load 

Specime

n 

h   

(mm) 
L/h 

fc’ 

(MPa) 

rs        

(%) 
rsv  (%) 

Applied load V (kN) Deflection D (mm) mD (= 

Du/Dy) 
Failure mode 

Vsh Vy Vp Vu Dsh Dy Dp Du 

MCB1 
600 1.17 

45.5 0.485 1.069 264 262 344 292 11.52 10.50 42.50 60.00 5.7 shear-tension 

CCB1 42.3 0.485 1.069 257 260 327 278 10.96 10.00 20.00 40.00 4.0 shear-tension 

MCB2 
500 1.40 

45.7 0.486 1.069 237 198 260 221 11.92 5.97 41.04 69.00 11.6 flexural 

CCB2 39.5 0.486 1.069 184 190 227 193 5.85 6.00 12.00 30.00 5.0 shear-compression 

MCB3 
400 1.75 

35.0 0.496 1.069 156 126 159 135 37.00 4.00 38.00 49.00 12.3 flexural 

CCB3 38.9 0.616 1.069 154 135 165 140 10.00 5.00 10.00 25.00 5.0 shear-sliding 

MCB4 
350 2.00 

37.4 0.563 1.069 133 100 140 119 46.60 4.16 48.20 70.00 16.8 flexural 

CCB4 37.7 0.563 1.069 114 110 123 104 12.00 6.00 12.00 36.00 6.0 flexural 
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Large local rotations took place at the beam-wall joints when the main 

or diagonal bars yielded. The additional displacements arising from the 

local rotations of the beam-wall joints contributed about 35 to 70 % to 

the total lateral displacements when m=3. 
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Axial elongation of a deep RCCB 
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 Axial elongation increased quickly after yield load. The maximum 

average elongation strains recorded for the conventionally 

reinforced coupling beams were around 1.2 to 2.0% and that for the 

diagonally reinforced coupling beam was about 2.5 %.   
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Behavior of deep RCCBs 

Behavior of the deep RCCBs in shear wall system is different from 

frame beams in several aspects:  

 The stress distribution in the flexural reinforcement in a coupling 

beam is consistent with the moment distribution before the 

appearance of shear crack, just like a frame beam. After shear 

cracking, both the top and the bottom reinforcing bars are subject 

to tension within most of the span, as a result, the contribution of 

the compression reinforcement to load resisting capacity and 

ductility will not exist and lead to specially failure modes .  

 The local deformation at the beam-wall joint is much larger than 

deformation of the beam itself.  

 Besides local failure such as anchorage failure and bearing failure, 

the failure modes of coupling beams can be classified as flexural or 

flexural shear failure, shear tension (diagonal splitting) failure and 

shear sliding failure respectively.  

2019/6/28 
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Full slit (Li and Li, 1984) 

slit 

Different reinforced concrete coupling beams 

Multi-slit (Cheng et al., 1993) 

short slit 

concrete key 

Partial slit (Ding et al., 1997) 

a hole 

keyway 

Reinforcement layout in slit coupling beam 
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Steel plate reinforced RC coupling beams (RCCBs) is an alternative 

way of RC coupling beams.  Steel plate in a RC deep coupling beam 

can easily improve the shear resisting capacity of the RC coupling 

beams.  

Steel plate reinforced RC coupling beam 

Shear Stud

Steel Plate

WallWall

Section A-A

Shear Stud

Steel Plate

Coupling Beam

Elevation

(Su and Lam, 2002) 
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Steel plate reinforced RC coupling beam 

(Su and Lam 2002)  

Load-Rotation Envelopes
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Load-Rotation Curve - Unit B3
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Load-Rotation Curve - Unit B4
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Load-Rotation Curve - Unit B5

-500

-400

-300

-200

-100

0

100

200

300

400

500

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

q  (Rad)

V
 (

k
N

)

m

0 8642-2-4-6-8

V u *

 

7R8 - 100

2T20 - t&b

Shear Stud
at 100 c/c

B
5

B
5

Section B5-B5

Grade 50 Plate
10mm thk x 240mm dp

 

Su and Lam (2002) studied the feasibility of a new coupling beam 

design making use of the composite action between an embedded 

steel plate and its surrounding reinforced concrete via shear studs.  It 

was proven that the use of embedded steel plates could increase the 

strength and stiffness of coupling beams while maintaining small 

sectional sizes, but shear studs are necessary to ensure desirable 

inelastic beam behaviours.   
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Steel plate reinforced RC coupling beam 
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 One steel plate was embedded and extended into wall blocks at both 

ends.  A steel angle was welded at each end of the steel plate to 

ensure its anchorage in the wall blocks.  

 Two deformed bars were welded on each side of the plate.  
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Steel plate reinforced RC coupling beam 

Six coupling beams were tested. The thickness and clear span of the 

specimens were fixed at 150 mm and 750 mm respectively. 

Variables: span/depth ratio; steel plate section; steel ratio 

Details of the specimens 

2019/6/28 



25 

Steel plate reinforced RC coupling beam 

 

D8

D6

D7

D3

D4

D5

D2

D1  

 Displacements were measured using linear variable displacement 

transducers (LVDTs).  

 Strains of longitudinal bas, stirrups and steel plates were obtain by 

using strain gauges. 

Deflection monitoring Strain monitoring 
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Steel plate reinforced RC coupling beam 

The test setup was the same as RCCBs test. The specimen was 

erected with beam longitudinal axis in the vertical direction. Shear 

load was applied to the specimen through the L-shaped loading frame. 

The action line of the applied load passed through the mid-span of the 

beam specimen. A rotation restraint mechanism was installed.  

Test setup 

 

Reaction Wall

L-Shaped

Loading Frame

Specimen

Base Beam

600 kN
Actuator

Balance

Weight

Balance

Weight

Rotation Restraint

Mechanism
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CB15-1 CB15-2 CB15-3 CB15-4 

Steel plate reinforced RC coupling beam 

Peak load 

Failure 

2019/6/28 Crack pattern and failure modes 
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CB25-1 CB25-2 

Steel plate reinforced RC coupling beam 

Failure Peak load Failure Peak load 

2019/6/28 

Crack pattern and failure modes 
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Steel plate reinforced RC coupling beam 

CB15-2 CB15-3 

CB15-4 CCB2 

 

-500

-400

-300

-200

-100

0

100

200

300

400

500

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

 θ=(D3-D5)/d (rad)

lo
a

d
 (

k
N

)

(+

D3

D5

CB15-1 

Compare the hysteretic curves of CB15 series with that of CCB2, the 

introduction of steel plate in a coupling beam can not only increase the 

strength and energy dissipation capacity, but increase the stiffness of the 

beam under reversed cycle loading and greatly reduce the pinching effect of 

the load-rotation curve.  
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Steel plate reinforced RC coupling beam 

Unit 3-Lam(2005) 

CB25-1 
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For CB25 series and Lam’s specimens, there is similar phenomenon. 
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Steel plate reinforced RC coupling beam 

CB25 series & UNit3-Lam  
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CB15 series & CCB2-ZZZ(l/h=1.4) 

Compare the skeleton curves of CB15 series with that of CCB2-ZZZ(l/h=1.4) 

and CB25 series and UNit3-Lam, the introduction of steel plate in a coupling 

beam can not only increase the strength and energy dissipation capacity, but 

increase the stiffness of the beam under reversed cycle loading and greatly 

reduce the pinching effect of the load-rotation curve.  
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Steel plate reinforced RC coupling beam 

Specimen 
Vy 

(kN) 

Vu 

(kN) 

Ratation (10-3rad) Ductility ratio 
Failure mode 

θy(rad) θu(rad) Θu1(rad) θu/θy θu1/θy 

CB15-1 241 377 3.66 25.00 44.52 6.83 12.16 Flexural Shear 

CB15-2 252 363 3.88 18.12 25.96 4.67 6.69 Flexural Shear 

CB15-3 292 367 5.43 11.94 26.44 2.20 4.86 Flexural 

CB15-4 223 340 3.76 12.25 31.38 3.26 8.35 Flexural Shear 

CB25-1 156 198 7.71 16.23 26.81 2.10 3.48 Shear 

CB25-2 191 254 6.56 14.91 29.54 2.27 4.50 Flexural Shear 

 

Load and deflection characteristic parameters of the specimens 

 CB15-3 and CB15-4 have the highest and lowest yield strength 

respectively, which may result from the depth of the steel plate 

encased in the specimen. 

 CB15-1 and CB15-2 have similar steel plate reinforcement ratio and 

hence have similar load capacity.  

 CB15-4 have a large steel plate while has the lowest load capacity 

due to  anchorage failure of steel plate in the wall piers. So enough 

anchorage of steel plate must be provided. 

2019/6/28 
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Steel plate reinforced RC coupling beam 

Specimen 
Vy 

(kN) 

Vu 

(kN) 

Ratation (10-3rad) Ductility ratio 
Failure mode 

θy(rad) θu(rad) Θu1(rad) θu/θy θu1/θy 

CB15-1 241 377 3.66 25.00 44.52 6.83 12.16 Flexural Shear 

CB15-2 252 363 3.88 18.12 25.96 4.67 6.69 Flexural Shear 

CB15-3 292 367 5.43 11.94 26.44 2.20 4.86 Flexural 

CB15-4 223 340 3.76 12.25 31.38 3.26 8.35 Flexural Shear 

CB25-1 156 198 7.71 16.23 26.81 2.10 3.48 Shear 

CB25-2 191 254 6.56 14.91 29.54 2.27 4.50 Flexural Shear 

 

Load and deflection characteristic parameters of the specimens 

 CB25-2 has a thicker steel plate, so its load resisting capacity and 

energy dissipation capacity are much higher than that of specimen 

CB25-1. Its yield load and peak load is increased by more than 20%. 

During post peak stage, yielding of the longitudinal bars and 

stirrups led to decreasing of load resisting capacity.  

 Specimen with large plate section area has a stable load-deflection 

hysteretic curve. This proves that the minimum steel plate 

reinforcement ratio should be met to obtain desired performance.  

2019/6/28 
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Steel plate reinforced RC coupling beam 

Shear resisting capacity of the steel plate reinforced RCCB affected by 

steel plate reinforcement ratio, depth, thickness, depth/thickness ratio, 

using FE method. 

Depth Depth/Thickness Ratio 
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 Advantage of Precast structures (PC VS Cast-in-site RC):  

 Higher construction quality  

 Possible increased construction speed  

 Improved durability  

 Reduction in situ labor or waste  

 Seismic design are required for precast structures. 

 Precast residential buildings in China are mostly designed as 

precast shear wall structures. Precast wall systems can be 

classified into two types: 

 Jointed system: “dry” or “ductile” connections (damages 

concentrate on connections)  

 Equivalent monolithic system: “wet” or “strong” (same as 

cast-in-situ structures) 

Assembled RC coupling beam 

2019/6/28 



37 

Assembled RC coupling beam 

 The assembled RC coupling beam includes the top and the bottom 

precast RC segment combined together by the center cast-in-place 

RC slab boundary.   

 Seismic behavior of the assembled RC coupling beam under 

simulated cyclic loading have been studied carefully and some 

detailing methods have been proposed. Some studies conducted 

in Tsinghua University are briefly introduced. (Qian and Zhao,2013)     

2019/6/28 

assembled RC coupling beam  
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Assembled RC coupling beam 
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Group Specimen 
L 

（mm） 

h 

（mm） 
L/h 

Connection method with  

the upper part 

A A 2400 1300 1.85 Grouted couplers 

B B 2400 1300 1.85 None 

C 

C1 1500 1000 1.5 Grouted couplers 

C2 2000 1000 2.0 Grouted couplers 

C3 2400 1000 2.4 Grouted couplers 

D 

D1 1500 1000 1.5 None 

D2 2000 1000 2.0 None 

D3 2400 1000 2.4 None 

E E 1500 500 3.0 － 

 

Test of 9 assembled RCCB specimens with different connection 

methods between the upper and the lower part  has been carried out 

in Tsinghua Univerty. 

Details of the specimens 
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Assembled RC coupling beam 
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Assembled RC coupling beam 
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Crack pattern of the assembled RCCBs (Qian and Zhao, 2013) 

A B C1 C2 E 
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Assembled RC coupling beam 
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Assembled RC coupling beam 
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Measured and predicted capacity of assembled RCCBs 

Specimen Model 

Predicted Measured Fp（kN） Measured/Predicted 

Vu

（kN） 

2Mu/L

（kN） 
Positive Negative Average 

Fp/ Vu 
Fp/(2Mu/L) 

A 
1 beam  584 300 

571 455 513 
0.89 1.71 

2.82 2 beam 639 182 0.80 

B 
1 beam  584 294 

468 375 422 
0.72 1.44 

1.88 2 beam 646 224 0.65 

C1 
1 beam  491 359 

500 451 475 
0.97 1.32 

2.49 2 beam 543 191 0.87 

C2 
1 beam  496 269 

446 376 411 
0.83 1.53 

2.87 2 beam 548 143 0.75 

C3 
1 beam  494 224 

381 330 356 
0.72 1.59 

2.99 2 beam 545 119 0.65 

D1 
1 beam  574 361 

653 504 578 
1.00 1.60 

2.13 2 beam 636 271 0.91 

D2 
1 beam  604 271 

352 357 354 
0.59 1.31 

1.74 2 beam 669 204 0.53 

D3 
1 beam  573 226 

302 293 298 
0.52 1.32 

1.75 2 beam 631 170 0.47 

E — 348 109 204 175 189 0.54 1.73 
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3-story full-scale PC shear wall structure model 

Global experimental study on a 3-story full-scale precast concrete 
shear wall structure with rebars spliced by grouted couplers in 
Tsinghua University. 

2019/6/28 
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3-story full-scale PC shear wall structure model 
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Detailing of the assembled RC coupling beams: upper belly wall (non 

structure element) + grout-filled gap + bottom coupling beam. All 

window belly walls and the lower segments were connected by a 20 

mm thick high-strength grout-filled construction gap, no rebar spliced. 
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3-story full-scale PC shear wall structure model 

The 3-story full-scale precast concrete shear wall structure model. 

Actuators

Loading beam

Reaction floor

Anchoring  
end

E

W N

S

Tensioning end

Reaction wall

Foundation beam
Fixed beam

Prestressing 
tendons

Displacement transducer
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3-story full-scale PC shear wall structure model 

0.035g
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LST

LST LST LST LST

LST: lateral stiffness test with a top 
lateral displacement amplitude of 2 mm.
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Loading protocol 
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3-story full-scale PC shear wall structure model 

   
(a) 0.07g PGA (b) 0.20g PGA (c) 0.40g PGA 

   
(d) 0.62g PGA (e) PsD and QuS tests (f) story drift 
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South facade (axes A)

West East

East West

East West

West East

Wall on axes C of 1st story

Wall on axes B of 1st story

Wall on axes A of 1st story

1st story slab

2nd story slab

3rd story slab

Window
belly
wall
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beam

Cracking

2
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1
.4

 m
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.0
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Failure modes of the test model after QuS test 

 After the 1st cycle of 1/50 drift, 

the QuS test was terminated for 

safety reasons.  

 Cracks and damages of the test 

model concentered on the 

coupling beams and window belly 

walls in loading direction. 

 Cracks of walls distributed at a 

height of 0 ~ 2.0 m from the 

foundation, with a maximum 

width of 2 mm.  

 No crack was observed at wall 

limbs of the 2nd and 3rd story.  

 The test model exhibited the 

desired “strong wall limb and 

weak coupling beam” failure 

mode. 
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Failure modes of coupling beams and window belly walls 

 After 0.40g PsD test, all coupling beams were dominated by flexural 

cracks, while shear cracks developed at the window belly walls 

located on axes A and C at the 2nd and 3rd story.  

 After QuS test, the window belly walls on axes A and C failed in 

shear mode. Influenced by the upper window belly walls, coupling 

beams located on axes A and C at the 1st and 2nd story with aspect 

ratios of 2.5 were dominated by shear inclined cracks.  

Axes A 

Window belly wall of 3rd story
Coupling beam of 2nd story

1200 mm

4
8
0
 m

m
4
2
0
 m

m

After 0.40g PsD test

After QuS test

Coupling beam of 2nd story

Axes C 
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1200 mm

5
8

0
 m

m

1200 mm

5
8

0
 m

mAxes A

Axes C

Coupling beams at the 3rd story, after QuS test 

 Note that coupling beams located on axes A and C at the 3rd story, 

with aspect ratios of 2.1 and no upper window belly wall, failed in 

flexural mode, characterized by concentrated plastic hinges at both 

ends and slight shear cracks.  

Failure modes of coupling beams and window belly walls 

 It can be concluded that upper window belly walls significantly 

influenced the failure modes of coupling beams. A composite effect 

existed in the lower coupling beam and upper window belly wall. 

Designing the window belly wall as a upper coupling beam to form 

double coupling beams may be a feasible alternative. 
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3-story full-scale PC shear wall structure model 

LB4 LB1 

A new research program on assembled RCCBs, especially composite effect 

between the window belly wall and the lower coupling beams are carried out 

in Tsinghua University. 
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A type of replaceable steel coupling beam, with a central fuse shear 

link connecting with normal steel beam segment at its two ends, has 

been proposed  and studied in Tsinghua Univ. (Ji and Wang 2016)  
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3 Key issues should be considered. 

 Very short shear links 

 Link-to-beam connections 

 RC slab design 

Shear link

Replacement
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Beam segment

Replaceable steel coupling beam (RSCB) 
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 The very short shear links generated an overstrength factor 

of approximately 1.9, significantly exceeding the value of 1.5 

assumed for EBF links in the AISC 341-10 provisions.  
2019/6/28 
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CB1: End plate connection 

I-shaped section link  

CB2: Splice plate connection 

Test of link-to-beam connection 
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Adhesive resists eccentric shear 
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CB3: Bolted web connection 
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Test setup 
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Loading protocol 
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CB1 CB2 

CB3 
CB4: Adhesive fracture 
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65 CB1 CB2 CB3 

 Coupling beam 
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 Shear link 
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Spec. 

No. 

Connection 

type 

Ultimate 

rotation 

(rad) 

Residual 

rotation  for 

replacement 

(rad) 

Replacement 

time  

(hour) 

CB1 
End plate 

connection 
0.06 0.0045 0.4 

CB2 
Splice plate 

connection 
0.09 0.0045 2.6 

CB3 
Bolted web 

connection 
0.06 0.0065 2.2 

CB4 
Adhesive web 

connection 
0.003 —— —— 

Replaceability 

(Ji and Wang 2016) 2019/6/28 
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CBS1: Composite slab 

RC slab

Shear link

Headed Stud

Beam segment

Shear key

RC slab design 
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CBS2: Isolated slab 

 CBS3: Bearing slab    CBS4: Slotted slab 

CBS1: Composite slab   

polystyrene sheetBent rebar

Shear link

RC slab

Beam segment

Separation

(50 mm)

Shear link

RC slab

Beam segment

Shear link

RC slab

Beam segment

RC slab

Shear link

Headed Stud

Beam segment

Shear key
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RC slab

Beam segment

Shear link
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Studs pulled out

Slab damage 

• At 0.04 rad beam rotation, most of shear studs pulled out 

from the RC slab, and the rebars were exposed and buckled. 

• Shear studs are NOT recommended for use between the 

RSCBs and their above slabs. 

Concrete cover 

spalling

Exposed rebar

2019/6/28 
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polystyrene sheetBent rebar

Shear link

RC slab

Beam segment

CBS2: Isolated slab (GOOD) 

 CBS3: Bearing slab (FAIR)  CBS4: Slotted slab (FAIR) 

CBS1: Composite slab (BAD) 

Separation

(50 mm)

Shear link

RC slab

Beam segment

Shear link

RC slab

Beam segment

RC slab

Shear link

Headed Stud

Beam segment

Shear key
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Beijing Sancai Building (11 story, 48.5 m) 

2019/6/28 72 
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48600
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Longitudinal

Transverse

Hybrid coupled wall

RSCBs

RC coupling 

beams

RC beamsRC slab RC columns

 Design basis earthquake (DBE) PGA 0.2g 

 Period：1.57 s (Y)、1.53 s (X)、1.26 s (Torsion) 

 Seismic design: linear spectrum analysis under SLE  

 Interstory drift ratio (SLE) < 1/800  

2019/6/28 
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Conclusions 
 Deep RCCBs behaved quite differently from ordinary frame beams after 

the appearance of inclined shear cracks. All the longitudinal reinforcement 

bars becoming in tension and the beams starting to elongate. The elongation 

strains of the beams were of the order of 1.5 to 2.5 %.   

High nominal shear stresses had led to the tendency of the deep RCCBs 

to fail in shear. Additional displacement due to the local rotations at the 

beam-wall joints had contributed about half to the total lateral displacement 

and resulted in the above relatively high drift ratios. Diagonally reinforced 

deep RCCB had a more stable hysteretic load-displacement curve and a 

much better energy dissipation capacity. Sufficient lateral hoops should be 

provided along the diagonal reinforcement. 

Steel plate RCCB can improve the behavior of Deep RCCB. Steel plate 

can resist more shear force with the displacement increasing. Stirrups also 

plays an important role in resisting the shear loads. The spacing of the 

stirrups should be limited to prevent the spalling of the concrete cover 

around the longitudinal reinforcement. 

 
2019/6/28 
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Conclusions 
 The precast shear wall structure with rebars spliced by grouted 

couplers(PSWGC) exhibited excellent seismic performance. No visible 

damage concentrated on the joints connecting precast members. The 

window belly wall, which was precast with wall limbs as a whole, 

significantly affected crack patterns of the lower coupling beams under 

large drift. The composite effect between the window belly wall and the 

lower coupling beams should be carefully considered in structure design. 

 Replaceable steel coupling beam is a feasible way for improving seismic 

performance of deep RCCBs in a CSW structure. Design philosophy and 

detailing method have been proposed.   

2019/6/28 



77 

Thanks much for your attention! 
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