BIM-based Integration of Virtual and **Physical Building Components**

Professor Chimay J. Anumba

FREng, PhD, DSc, Dr.h.c., CEng, FICE, FIStructE, FCIOB, FASCE

Preamble

- Penn State:

 - Over 82,000 students on 24 'Commonwealth' campuses across PA
 Main campus is University Park with about 45,000 students
 University Park is located in Central PA (3-4hrs from Philadelphia, Washington DC, New York, Pittsburgh, Cleveland, etc.)
- Architectural Engineering:
 - One of 12 Depts/Programs in College of Engineering
- About 500 students (400 UG and 100 PG)
- About 25 faculty (7 of whom are adjunct)
- Department was 100 years in 2010 !!!
- Degree Programmes:
- 5 year B.A.E
- Integrated B.A.E./M.A.E + Integrated B.A.E./M.S.
- M.S., M.Eng., Ph.D. in Architectural Engineering

AE Dept.'s Latest Claim to Fame: \$129m Energy Efficient Buildings Research Grant Dave Cole Photography

Outline

- Introduction
- BIM @ Penn State
- Previous Integration Efforts
- The Cyber-Physical Systems Approach
- Enabling Technologies
- System Architecture
- Triggers for Bi-directional Coordination
- Deployment Scenarios
- Conclusions

Definitions

- What is BIM?
 - Butterflies in Motion?
 - Building Information Management?
 - Building Information Modelling?
- Building Information Modelling:
 - 'a modeling technology and associated set of processes to produce, communicate and analyze building models'
 Eastman et al, 2007
 - 'a digital representation of physical and functional characteristics of a facility...'

- NBIMS, 2009

Engineering News-Record Professor Gifford Albright Professor Gifford Albright

Early BM Pioneer?

MODCON

Man-Machine System for the Optimum Design and Construction of Buildings

Vision (1961):

'a computer operation with both verbal and graphic printout that will allow an architect, engineer and others to sit down together and quickly conceive, design and specify a building on the basis of total performance criteria'

,	
_	

BIM Education at Penn State

- Students use AutoCAD in 1st year drawing course
- Revit now used in 2nd and 3rd years for building modelling
- Integrated BIM Studio in 4th year links AE students (construction, lighting/electrical, mechanical & structural options) with architecture and landscape architecture students.
- BIM/IPD Thesis an option in 5th year capstone project

BIM/IPD Thesis

- 3 Student Groups of 4 one from each option
- Projects: NY Times Building, Millennium Science Complex (PSU), Ice Hockey Arena (PSU)
- Replicates real world experience
- Students' collaboration skills and technical knowledge (depth and breadth) greatly enhanced
- Final presentations to large industry jury...
- Penn State has won 4 national awards: AIA (x2), NCARB, Autodesk

Immersive C	onstruct	tion (ICoı	n) Lab at Pe	enn State
No.		nship of Nature and Learning		
INTEGRATING BIM	INTO ACADE	:MIA INTEG	RATING ACADE	MIA WITH BIM
BIM	tecture	Landscape Architecture	Mechanical, Structural, Lighting/Electrical	Construction Engineering

• Maximize benefits of BIM to owners • Link BIM to operation/FM • Huge potential for lifecycle asset management

Research Example

Integration of Physical and
Virtual Building Components

Physical Construction

- Physical Construction
- Components to be tracked
- Activities to be monitored
- Processes to be controlled
- Systems to be manipulated
- All these need information
- from the virtual model.

Integration of BIM/Virtual Models with the Physical Construction								
	Improved Project Delivery							

Previous Integration Efforts

- BIM and Building Components
 - RFID tags
 - (Hammad and Motamedi, 2009)
- Database

 Database

 PRID
 Reader
 Reade
- 4D CAD and Steel Components
 - RFID tags
 - (Chin et al, 2008)

Previous Integration Efforts

- 4D CAD and Physical Construction
 - Digital camera
 - (Golparvar-Fard et al.,2009)

- 3D CAD and Physical Construction
 - 3D Laser scanner
 - (Boche et al., 2008)

Previous Integration Efforts Industry: Field BIM and Physical Construction Barcode Field Incelling Units 1.2.3 operating per spec. Home office Job trailer

Need for Improvement

- Limited mechanisms for real-time bi-directional coordination between virtual models and the physical building components;
- Lost opportunity for the use of sensors and other embedded instrumentation to track and control the construction process/constructed facility.

Cyber-Physical Systems Approach

Support for CPS Requirements

a. m	Previous Approaches					
Cyber-Physical System Integration Requirements	RFID + VM	Photography + VM	Laser Scan +VM	Photogram. + VM		
Communicate design information	L	L	L	L		
Capture and document as- built information	M	L	M	L		
Track construction progress	M	M	M	M		
Control building components in the constructed facility	L	L	L	L		

Enabling Technologies

- Virtual models
- Wireless sensors and RTLS/RFID tags
- Cameras
- 3D Laser scanners
- Mobile devices (tablet PC, PDA)
- Mobile communications networks

Actuation Layer Virtual Prototype User-interface Contents and Application Layer Contents and Application Layer Contents and Application Layer Contents and Application Layer Whan Whan

Triggers for Bi-directional Coordination

- Design Changes
- Capture and document construction changes and as-built information
- Track construction progress
- Temporal conditions required for constructability
- Control components and sub-systems

Wider Implications

- Real-time information exchange between site and design office
- Reduction of construction risks as activities and processes can be more closely monitored and controlled
- Accurate as-built models useful for:
 - Facility operation and management
 - Deconstruction/decommissioning
- Improved opportunities for sustainable construction practices through:
 - Minimizing delays and waste on site
 - Energy Management
- Etc.

Conclusions

- Real-time bi-directional coordination b/w virtual models and physical components needed
- Current mechanisms offer limited support for CPS (Cyber-Physical Systems)
- Approach presented here addresses this
- Laboratory and field test results positive...
- Many potential benefits in construction process tracking and active component control

