1. Zhang, K., & Chui. T. F. M. (2019). Linking hydrological and bioecological benefits of green infrastructures across spatial scales - a literature review. Science of the Total Environment, 646, 1219-1231. 
    2. Yang, Y., & Chui, T. F. M. (2018). Combined ecohydrological effects of wind regime change and land reclamation on a tidal marsh in semi-enclosed bay. Ecological Engineering, 124, 123-134. 
    3. Zhang, K., & Chui. T. F. M. (2018). Interactions between shallow groundwater and LID underdrain flow at different temporal scales. Hydrological Processes, 32(23), 3495-3512.
    4. Huang, P., & Chui. T. F. M. (2018). Empirical equations to predict the characteristics of hyporheic exchange in a pool-riffle sequence. Groundwater, 56(6), 947-958.
    5. Zhang, K., Chui. T. F. M. & Yang, Y. (2018). Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM. Journal of Hydrology, 566, 313-331.
    6. Yang, Y., & Chui, T. F. M. (2018). Integrated hydro-environmental impact assessment and alternative selection of low impact development practices in small urban catchments. Journal of Environmental Management, 223, 324-337  .
    7. Liu, S., & Chui. T. F. M. (2018). Impacts of different rainfall patterns on hyporheic zone under transient conditions. Journal of Hydrology, 561, 598-608.
    8. Yang, Y., & Chui. T. F. M. (2018). Rapid assessment of hydrologic performance of low impact development practices under design storms. Journal of the American Water Resources Association, 54(3), 613-660
    9. Liu, S., & Chui. T. F. M. (2018). Impacts of streambed heterogeneity and anisotropy on residence time of hyporheic zone. Groundwater.  56(3), 423-436.
    10. Zhang, K., & Chui. T. F. M. (2018). A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Science of the Total Environment, 621, 915-929.
    11. Yang, Y., Chui. T. F. M., Shen, P. P., Yang, Y., & Gu, J. D. (2018). Modeling the temporal dynamics of intertidal benthic infauna biomass with environmental factors: Impact assessment of land reclamation. Science of the Total Environment, 618, 439-450.
    12. Yang, Y., & Chui. T. F. M. (2018). Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management. Journal of Environmental Management, 206, 1090-1103.
    13. Chang, N., Lu, J., Chui, T. F. M., & Hartshorn, N. (2018). Global policy analysis of low impact development for stormwater management in urban regions. Land Use Policy, 70, 368-383.
    14. Liu, C. Y., & Chui. T. F. M. (2017). Factors influencing stormwater mitigation in permeable pavement. Water, 9(12), 988.
    15. Cui, W., & Chui. T. F. M. (2017). Subsurface lateral heat flux within the heterogeneous surface of a subtropical wetland and its potential contribution to energy imbalance. Journal of Hydrometeorology, 18(12), 3125-3144.
    16. Zhang, K., & Chui. T. F. M. (2017). Evaluating hydrologic performance of bioretention cells in shallow groundwater. Hydrological Processes, 31(23), 4122-4135.
    17. Yang, Y., & Chui. T. F. M. (2017). Aquatic environmental changes and ecological implications from the combined effects of sea-level rise and land reclamation in Deep Bay, Pearl River Estuary, China. Ecological Engineering, 108, 30-39.
    18. Zheng, S., Lourenço, S. D. N, Cleall, P. J., Chui, T. F. M., Ng, A. K.Y., &  Millis, S. W. (2017). Hydrologic behavior of model slopes with synthetic water repellent soils. Journal of Hydrology, 554, 582-599.
    19. Yang, Y., & Chui. T. F. M. (2017). Hydrodynamic and transport responses to land reclamation in different areas of semi-enclosed subtropical bay. Continental Shelf Research, 143, 54-66.
    20. Cui, W., & Chui. T. F. M. (2017). Temporal variations in water quality in a brackish tidal pond: Implications for governing processes and management strategies. Journal of Environmental Management, 193, 108-117. 
    21. Zhan, W., & Chui. T. F. M. (2016). Evaluating the life cycle net benefit of low impact development in a city. Urban Forestry and Urban Greening, 20, 295-304.
    22. Chui, T. F. M., & Trinh, D. H. (2016). Modeling infiltration enhancement in a tropical urban catchment for improved stormwater management. Hydrological Processes, 30(23), 4405-4419.
    23. Yang, Y., & Chui. T. F. M. (2016). Potential causes of salinity trend in seawater overlaying a mudflat inside a semi-enclosed bay. Wetlands, 36(5), 831-840.
    24. Chui, T. F. M., & Ngai, W. Y. (2016). Willingness to pay for sustainable drainage systems in a highly urbanised city: a contingent valuation study in Hong Kong. Water and Environment Journal, 30(1-2), 62-69.
    25. Chui. T. F. M., Liu, X., & Zhan, W. (2016). Assessing cost-effectiveness of specific LID practice designs in response to large storm events. Journal of Hydrology, 533, 353-364.
    26. Meshgi, A., Schmitter, P., Chui. T. F. M., & Babovic, V. (2015). Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using Genetic Programming. Journal of Hydrology, 525, 711-723.
    27. Palanisamy, B., & Chui. T. F. M. (2015). Rehabilitation of concrete canals in urban catchments using low impact development techniques.  Journal of Hydrology, 523, 309-319.
    28. Chui. T. F. M., & Terry, J. P. (2015).  Groundwater salinisation on atoll islands after storm-surge flooding: modelling the influence of central topographic depressions. Water and Environment Journal, 29(3), 430-438.
    29. Meshgi, A., Schmitter, P., Babovic, V., & Chui. T. F. M. (2014). An empirical method for approximating stream baseflow time series using groundwater table fluctuations. Journal of Hydrology, 519, Part A, 1031-1041.
    30. Meshgi, A., & Chui. T. F. M. (2014). Analysing tension infiltrometer data from sloped surface using two-dimensional approximation. Hydrological Processes, 28(3), 744-752.
    31. Palanisamy, B., & Chui. T. F. M. (2014). Studying the relationship between plant biomass and water use for improved parameterization of plant competition in ecohydrological modelling.  Ecohydrology, 7(2), 843-857.
    32. Trinh, D. H., & Chui. T. F. M. (2013). Assessing the hydrologic restoration of an urbanized area via integrated distributed hydrological model.  Hydrology and Earth System Sciences, 17(12), 4789-4801.
    33. Karunasingha, D. S. K., Chui. T. F. M.. & Liong, S.Y. (2013). An approach for modelling the effects of changes in hydrological environmental variables on tropical primary forest vegetation, Journal of Hydrology, 505, 102-112.
    34. Chui, T. F. M., & Terry, J. P. (2013). Influence of sea-level rise on freshwater lenses of different atoll island sizes and lens resilience to storm-induced salinization.  Journal of Hydrology, 502, 18-26.
    35. Trinh, D. H., & Chui. T. F. M. (2013). An empirical method for approximating canopy throughfall.  Hydrological Processes, 27(12), 1764-1772.
    36. Palanisamy, B., & Chui. T. F. M. (2013). Understanding wetland plant dynamics in response to water table changes through ecohydrological modeling.  Ecohydrology, 6(2), 287-296.
    37. Ly, D. K., & Chui. T. F. M. (2012). Modeling sewage leakage to surrounding groundwater and stormwater drains.  Water Science and Technology, 66(12), 2659-2665. 
    38. Terry, J. P., & Chui. T. F. M. (2012). Evaluating the fate of freshwater lenses on atoll islands after eustatic sea-level rise and cyclone-driven inundation: a modelling approach. Global and Planetary Change, 88-89, 76-84.
    39. Chui, T. F. M., & Terry, J. P. (2012). Modeling freshwater lens damage and recovery on atolls after storm-wave washover.  Ground Water, 50(3), 412-420.
    40. Chui, T. F. M., Low, S. Y., & Liong, S. Y. (2011). An ecohydrological model for studying groundwater-vegetation interactions in wetlands.  Journal of Hydrology, 409(1-2), 291-304.
    41. Chui, T. F. M., & Freyberg, D. L. (2009). Implementing hydrologic boundary conditions in multiphysics model. Journal of Hydrologic Engineering, 14(12), 1374-1377.
    42. Chui, T. F. M., & Freyberg, D. L. (2008).  Simulating a lake as a high-conductivity variably-saturated porous medium.  Ground Water, 46(5), 688-694.